Wednesday, December 31, 2014

Numerical Problems


CHAPTER 01
Question 1.1
Speed of light, v = 3.0 x 108 ms-1
Travel time, t = 1 year
                         = 365 x 24 x 60 x 60 sec
                         = 31536000 sec
Since
            S = v . t
Therefore
            S = 3.0 x 108 x 31536000
S = 9.5 x 1015 m                     Answer

Question 1.2
Question 1.3
Length, L = 15.3 cm
Width, W = 12.80 cm
Volume, V = ?

Since
Volume = Length x Width
V = L x W
V = 15.3 x 12.80
V = 196 cm2               Answer


Question 1.4

Question 1.5
Here  

Length of simple pendulum, l = 100 cm
Time for 20 vibrations = 40.2 s
Meter scale accuracy = 1 mm
Stop watch accuracy = 0.1 s

Now
l = 100 cm
  = 100/100  m
  = 1 m
T = 40.2/20
   = 2.01 s

FOR LENGTH
            Absolute uncertainty = 1 mm = 0.1 cm
            %age uncertainty = (0.1/100)  x  (100/100) = 0.1 %

FOR TIME
            Absolute uncertainty = 0.1 sec
Average uncertainty = 0.1/20 = 0.005 sce
            %age uncertainty = (0.005/2.01)  x  (100/100) = 0.25 %

Total uncertainty = 2 x 0.025 + 0.1 = 0.6 %
Total uncertainty for g = 9.76 x 0.6 /100 = 0.06

Thus g = 9.76 ± 0.06 ms-2

Question 1.6
Question 1.7
vf = vi + a t
[LT-1] = [LT-1] + [LT-2 T]
[LT-1] = [LT-1] + [LT-1]
[LT-1] = [LT-1]
LHS = RHS                           Hence Proved

Question 1.8
According to question
            v ; ρa Eb
            v = constant . ρa Eb              - Eq (1)
For ρ
            ρ = m/v = [ML-3]                 - Eq (2)
For E
            E = stress/strain
            E = (F/A)/(∆l/l) = [MLT-2/L2] / [L/L] = [ML-1T-2]                   - Eq (3)
For v
            v = [LT-1]                               - Eq (4)

Putting the value of ρ, E and v from Eq (2), (3) and (4) in Eq (1), we get
            v = constant . ρa Eb 
            [LT-1] = constant [ML-3]a [ML-1T-2]b
            [LT-1] = constant Ma+b L-3a-b T-2b
Equating powers of corresponding quantities on both sides
a + b =0; - 3a - b = 1; -2b = -1
By solving, we get,
            a = -½, b = ½
Therefore from Eq (1)
            v = constant . ρa Eb
            v = constant . ρ E½

 Question 1.9
            E = m C2
            mgh = m v2
            [M LT-2 L] = [M (L T-1)2]
            [M L2 T-2] = [M L2 T-2]
LHS = RHS                           Hence Proved

Question 1.10
            a ; rn vm
            a = constt. rn vm
            [L T-2] = constt. [L]n [L T-1]m
            L T-2 = constt. Ln+m  T-m
Equating powers of corresponding quantities on both sides
n + m = 1; -m = -2
Þ        m = 2; n = -1                         Answer